- Photon Transport in a Bose-Hubbard Chain of Superconducting Artificial Atoms
G. P. Fedorov et al., Phys. Rev. Lett. 126, 180503 (2021) - Path-Dependent Supercooling of the
He3 Superfluid A-B Transition
Dmytro Lotnyk et al., Phys. Rev. Lett. 126, 215301 (2021) - Superconductivity in an extreme strange metal
D. H. Nguyen et al., Nat Commun 12, 4341 (2021) - High-Q Silicon Nitride Drum Resonators Strongly Coupled to Gates
Xin Zhou et al., Nano Lett. 21, 5738-5744 (2021) - Measurement of the 229Th isomer energy with a magnetic micro-calorimeter
T. Sikorsky et al., Phys. Rev. Lett. 125 (2020) 142503
The Vienna Nuclear Demagnetization Refrigerator
D H Nguyen, A Sidorenko, M Müller, S Paschen, A Waard, G FrossatiA new nuclear demagnetization system coupled to a powerful dilution refrigerator and a vector magnet was successfully built and operated. Our aim was to construct a versatile, modular cryostat, with a large experimental space providing an excellent platform for various types of ultralow temperature measurements. A powerful dilution unit allows us to cool the mixing chamber down to 3 mK and to precool a massive copper (∼90 mol) nuclear stage in a field of 9 T to 8 mK in 100 h. After demagnetization the lowest temperature of the copper stage measured by a Pt thermometer was 50.9 μK in a field of 20 mT. The cryostat is integrated with a 8 T-4 T vector magnet system. The refrigerator is provided with a 50 mm central clear shot tube allowing the insertion of a top-loading probe to cool down samples for measurements inside the vector magnet bore in a reasonably short time of about 4 hours. The system will be used to study quantum critical behavior of heavy fermion compounds.
J. Phys.: Conf. Ser. 400, 052024 (2012)
doi: 10.1088/1742-6596/400/5/052024