- Photon Transport in a Bose-Hubbard Chain of Superconducting Artificial Atoms
G. P. Fedorov et al., Phys. Rev. Lett. 126, 180503 (2021) - Path-Dependent Supercooling of the
He3 Superfluid A-B Transition
Dmytro Lotnyk et al., Phys. Rev. Lett. 126, 215301 (2021) - Superconductivity in an extreme strange metal
D. H. Nguyen et al., Nat Commun 12, 4341 (2021) - High-Q Silicon Nitride Drum Resonators Strongly Coupled to Gates
Xin Zhou et al., Nano Lett. 21, 5738-5744 (2021) - Measurement of the 229Th isomer energy with a magnetic micro-calorimeter
T. Sikorsky et al., Phys. Rev. Lett. 125 (2020) 142503
Photon Transport in a Bose-Hubbard Chain of Superconducting Artificial Atoms
G. P. Fedorov, S. V. Remizov, D. S. Shapiro, W. V. Pogosov, E. Egorova, I. Tsitsilin, M. Andronik, A. A. Dobronosova, I. A. Rodionov, O. V. Astafiev, and A. V. UstinovWe demonstrate nonequilibrium steady-state photon transport through a chain of five coupled artificial atoms simulating the driven-dissipative Bose-Hubbard model. Using transmission spectroscopy, we show that the system retains many-particle coherence despite being coupled strongly to two open spaces. We find that cross-Kerr interaction between system states allows high-contrast spectroscopic visualization of the emergent energy bands. For vanishing disorder, we observe the transition of the system from the linear to nonlinear regime of photon blockade in excellent agreement with the input-output theory. Finally, we show how controllable disorder introduced to the system suppresses nonlocal photon transmission. We argue that proposed architecture may be applied to analog simulation of many-body Floquet dynamics with even larger arrays of artificial atoms paving an alternative way towards quantum supremacy.
Phys. Rev. Lett. 126, 180503 (2021)
doi: 10.1103/PhysRevLett.126.180503
arxiv: https://arxiv.org/abs/2011.11454
supplemental material: https://journals.aps.org/prl/supplemental/10.1103/PhysRevLett.126.180503