- Photon Transport in a Bose-Hubbard Chain of Superconducting Artificial Atoms
G. P. Fedorov et al., Phys. Rev. Lett. 126, 180503 (2021) - Path-Dependent Supercooling of the
He3 Superfluid A-B Transition
Dmytro Lotnyk et al., Phys. Rev. Lett. 126, 215301 (2021) - Superconductivity in an extreme strange metal
D. H. Nguyen et al., Nat Commun 12, 4341 (2021) - High-Q Silicon Nitride Drum Resonators Strongly Coupled to Gates
Xin Zhou et al., Nano Lett. 21, 5738-5744 (2021) - Measurement of the 229Th isomer energy with a magnetic micro-calorimeter
T. Sikorsky et al., Phys. Rev. Lett. 125 (2020) 142503
Fully suspended nano-beams for quantum fluids
Ilya Golokolenov, Baptiste Alperin, Bruno Fernandez, Andrew Fefferman, Eddy CollinNon-invasive probes are keystones of fundamental research. Their size, and maneuverability (in terms of e.g. speed, dissipated power) define their applicability range for a specific use. As such, solid state physics possesses e.g. Atomic Force Microscopy (AFM), Scanning Tunneling Microscopy (STM), or Scanning SQUID Microscopy. In comparison, quantum fluids (superfluid 3He, 4He) are still lacking probes able to sense them (in a fully controllable manner) down to their smallest relevant lengthscales, namely the coherence length ξ0. In this work we report on the fabrication and cryogenic characterization of fully suspended (hanging over an open window, with no substrate underneath) Si3N4 nano-beams, of width down to 50 nm and quality factor up to 105. As a benchmark experiment we used them to investigate the Knudsen boundary layer of a rarefied gas: 4He at very low pressures. The absence of the rarefaction effect due to the nearby chip surface discussed in Gazizulin et al. [1] is attested, while we report on the effect of the probe size itself.
J Low Temp Phys 210, 550–561, (2023)
doi: 10.1007/s10909-022-02722-y
arxiv: https://arxiv.org/abs/2111.05278