- Photon Transport in a Bose-Hubbard Chain of Superconducting Artificial Atoms
G. P. Fedorov et al., Phys. Rev. Lett. 126, 180503 (2021) - Path-Dependent Supercooling of the
He3 Superfluid A-B Transition
Dmytro Lotnyk et al., Phys. Rev. Lett. 126, 215301 (2021) - Superconductivity in an extreme strange metal
D. H. Nguyen et al., Nat Commun 12, 4341 (2021) - High-Q Silicon Nitride Drum Resonators Strongly Coupled to Gates
Xin Zhou et al., Nano Lett. 21, 5738-5744 (2021) - Measurement of the 229Th isomer energy with a magnetic micro-calorimeter
T. Sikorsky et al., Phys. Rev. Lett. 125 (2020) 142503
Microwave Optomechanically Induced Transparency and Absorption Between 250 and 450 mK
Sumit Kumar, Dylan Cattiaux, Eddy Collin, Andrew Fefferman, Xin ZhouHigh-quality microwave amplifiers and notch-filters can be made from microwave optomechanical systems in which a mechanical resonator is coupled to a microwave cavity by radiation pressure. These amplifiers and filters rely on optomechanically induced transparency (OMIT) and absorption (OMIA), respectively. Such devices can amplify microwave signals with large, controllable gain, high dynamic range and very low noise. Furthermore, extremely narrowband filters can be constructed with this technique. We briefly review previous measurements of microwave OMIT and OMIA before reporting our own measurements of these phenomena, which cover a larger parameter space than has been explored in previous works. In particular, we vary probe frequency, pump frequency, pumping scheme (red or blue), probe power, pump power and temperature. We find excellent agreement between our measurements and the predictions of input/output theory, thereby guiding further development of microwave devices based on nanomechanics.
J Low Temp Phys 210, pages 562–572, (2023)
doi: 10.1007/s10909-022-02671-6
arxiv: https://arxiv.org/abs/2104.09208