- Photon Transport in a Bose-Hubbard Chain of Superconducting Artificial Atoms
G. P. Fedorov et al., Phys. Rev. Lett. 126, 180503 (2021) - Path-Dependent Supercooling of the
He3 Superfluid A-B Transition
Dmytro Lotnyk et al., Phys. Rev. Lett. 126, 215301 (2021) - Superconductivity in an extreme strange metal
D. H. Nguyen et al., Nat Commun 12, 4341 (2021) - High-Q Silicon Nitride Drum Resonators Strongly Coupled to Gates
Xin Zhou et al., Nano Lett. 21, 5738-5744 (2021) - Measurement of the 229Th isomer energy with a magnetic micro-calorimeter
T. Sikorsky et al., Phys. Rev. Lett. 125 (2020) 142503
Electrical Low-Frequency 1/fgamma Noise Due to Surface Diffusion of Scatterers on an Ultra-low-Noise Graphene Platform
Masahiro Kamada, Antti Laitinen, Weijun Zeng, Marco Will, Jayanta Sarkar, Kirsi Tappura, Heikki Seppä, Pertti HakonenLow-frequency 1/fγ noise is ubiquitous, even in high-end electronic devices. Recently, it was found that adsorbed O2 molecules provide the dominant contribution to flux noise in superconducting quantum interference devices. To clarify the basic principles of such adsorbate noise, we have investigated low-frequency noise, while the mobility of surface adsorbates is varied by temperature. We measured low-frequency current noise in suspended monolayer graphene Corbino samples under the influence of adsorbed Ne atoms. Owing to the extremely small intrinsic noise of suspended graphene, we could resolve a combination of 1/fγ and Lorentzian noise induced by the presence of Ne. We find that the 1/fγ noise is caused by surface diffusion of Ne atoms and by temporary formation of few-Ne-atom clusters. Our results support the idea that clustering dynamics of defects is relevant for understanding of 1/f noise in metallic systems.
Nano Lett. 21, 18, 7637–7643 (2021)
doi: 10.1021/acs.nanolett.1c02325
arxiv: https://arxiv.org/abs/2106.12452