- Photon Transport in a Bose-Hubbard Chain of Superconducting Artificial Atoms
G. P. Fedorov et al., Phys. Rev. Lett. 126, 180503 (2021) - Path-Dependent Supercooling of the
He3 Superfluid A-B Transition
Dmytro Lotnyk et al., Phys. Rev. Lett. 126, 215301 (2021) - Superconductivity in an extreme strange metal
D. H. Nguyen et al., Nat Commun 12, 4341 (2021) - High-Q Silicon Nitride Drum Resonators Strongly Coupled to Gates
Xin Zhou et al., Nano Lett. 21, 5738-5744 (2021) - Measurement of the 229Th isomer energy with a magnetic micro-calorimeter
T. Sikorsky et al., Phys. Rev. Lett. 125 (2020) 142503
Pulsed electron spin resonance of an organic microcrystal by dispersive readout
Ailsa K.V.Keyser, Jonathan J.Burnett, Sergey E. Kubatkin, Andrey V.Danilov, Mark Oxborrow, Sebastian E. de Graaf, TobiasLindströmWe establish a testbed system for the development of high-sensitivity Electron Spin Resonance (ESR) techniques for small samples at cryogenic temperatures. Our system consists of a NbN thin-film planar superconducting microresonator designed to have a concentrated mode volume to couple to a small amount of paramagnetic material, and to be resilient to magnetic fields of up to . At we measure high-cooperativity coupling (C≈19) to an organic radical microcrystal containing 1012 spins in a pico-litre volume. We detect the spin–lattice decoherence rate via the dispersive frequency shift of the resonator. Techniques such as these could be suitable for applications in quantum information as well as for pulsed ESR interrogation of very few spins to provide insights into the surface chemistry of, for example, the material defects in superconducting quantum processors.
J. Magn. Reson.321, 106853 (2020)
doi: 10.1016/j.jmr.2020.106853
arxiv: https://arxiv.org/abs/2009.06933