- Photon Transport in a Bose-Hubbard Chain of Superconducting Artificial Atoms
G. P. Fedorov et al., Phys. Rev. Lett. 126, 180503 (2021) - Path-Dependent Supercooling of the
He3 Superfluid A-B Transition
Dmytro Lotnyk et al., Phys. Rev. Lett. 126, 215301 (2021) - Superconductivity in an extreme strange metal
D. H. Nguyen et al., Nat Commun 12, 4341 (2021) - High-Q Silicon Nitride Drum Resonators Strongly Coupled to Gates
Xin Zhou et al., Nano Lett. 21, 5738-5744 (2021) - Measurement of the 229Th isomer energy with a magnetic micro-calorimeter
T. Sikorsky et al., Phys. Rev. Lett. 125 (2020) 142503
Fast tunable high Q-factor superconducting microwave resonators
S. Mahashabde, E. Otto, D. Montemurro, S. de Graaf, S. Kubatkin, and A. DanilovWe present fast tunable superconducting microwave resonators fabricated from planar NbN on a sapphire substrate. The λ/4 wavelength resonators are tuning fork shaped and tuned by passing a dc current which controls the kinetic inductance of the tuning fork prongs. The λ/4 section from the open end operates as an integrated impedance converter which creates a nearly perfect short for microwave currents at the dc terminal coupling points, thus preventing microwave energy leakage through the dc lines. We measure an internal quality factor Qint>10E5 over the entire tuning range. We demonstrate a tuning range of >3% and tuning response times as short as 20 ns for the maximum achievable detuning. Due to the quasi-fractal design, the resonators are resilient to magnetic fields of up to 0.5 T
Phys. Rev. Applied 14, 044040 (2020)
doi: 10.1103/PhysRevApplied.14.044040
arxiv: https://arxiv.org/abs/2003.11068