Selected Publications
- Photon Transport in a Bose-Hubbard Chain of Superconducting Artificial Atoms
G. P. Fedorov et al., Phys. Rev. Lett. 126, 180503 (2021) - Path-Dependent Supercooling of the
He3 Superfluid A-B Transition
Dmytro Lotnyk et al., Phys. Rev. Lett. 126, 215301 (2021) - Superconductivity in an extreme strange metal
D. H. Nguyen et al., Nat Commun 12, 4341 (2021) - High-Q Silicon Nitride Drum Resonators Strongly Coupled to Gates
Xin Zhou et al., Nano Lett. 21, 5738-5744 (2021) - Measurement of the 229Th isomer energy with a magnetic micro-calorimeter
T. Sikorsky et al., Phys. Rev. Lett. 125 (2020) 142503
Superconducting Sweet-Spot in Microcrystalline Graphite Revealed by Point-Contact Spectroscopy
F. Arnold, J. NyƩki, J. SaundersIn this letter, we describe the observation of a magnetic field dependent electronic gap, suggestive of local superconductivity, in the point-contact spectrum of microcrystalline graphite. Magnetic field dependent point-contact spectroscopy has been carried out at a temperature of 1.8 K using an etched aluminum tip. At zero field, a gap structure in the differential conductance is observed, showing a gap of meV. On applying magnetic fields of up to 500 mT, this gap gradually closes, following the theoretical prediction by Ginzburg and Landau for a fully flux-penetrated superconductor. By applying BCS-theory, we infer a critical superconducting temperature of 14K.
Jetp Lett. 107, 577-578 (2018)
doi: 10.1134/S0021364018090023
arxiv: https://arxiv.org/abs/1804.00179