- Photon Transport in a Bose-Hubbard Chain of Superconducting Artificial Atoms
G. P. Fedorov et al., Phys. Rev. Lett. 126, 180503 (2021) - Path-Dependent Supercooling of the
He3 Superfluid A-B Transition
Dmytro Lotnyk et al., Phys. Rev. Lett. 126, 215301 (2021) - Superconductivity in an extreme strange metal
D. H. Nguyen et al., Nat Commun 12, 4341 (2021) - High-Q Silicon Nitride Drum Resonators Strongly Coupled to Gates
Xin Zhou et al., Nano Lett. 21, 5738-5744 (2021) - Measurement of the 229Th isomer energy with a magnetic micro-calorimeter
T. Sikorsky et al., Phys. Rev. Lett. 125 (2020) 142503
Development of a novel calorimetry setup based on metallic paramagnetic temperature sensors
A. Reifenberger, A. Reiser, S. Kempf, A. Fleischmann, and C. EnssWe have developed a new micro-fabricated platform for the measurement of the specific heat of low heat capacity mg-sized metallic samples, such as superconductors, down to temperatures of as low as 10 mK. It addresses challenging aspects of setups of this kind such as the thermal contact between the sample and platform, the thermometer resolution, and an addenda heat capacity exceeding that of the samples of interest (typically nJ/K at 20 mK). The setup allows us to use the relaxation method, where the thermal relaxation following a well defined heat pulse is monitored to extract the specific heat. The sample platform (5 × 5 mm2) includes a micro-structured paramagnetic Ag:Er temperature sensor, which is read out by a dc-superconducting quantum interference device via a superconducting flux transformer. In this way, a relative temperature precision of 30nK/√Hz can be reached, while the addenda heat capacity falls well below 0.5 nJ/K for T < 300 mK. A gold-coated mounting area (4.4 × 3 mm2) is included to improve the thermal contact between the sample and platform.
Review of Scientific Instruments 91, 035118 (2020)
doi: 10.1063/1.5139090
arxiv: https://arxiv.org/abs/2003.00818
supplemental material: http://doi.org/10.5281/zenodo.3676882