- Photon Transport in a Bose-Hubbard Chain of Superconducting Artificial Atoms
G. P. Fedorov et al., Phys. Rev. Lett. 126, 180503 (2021) - Path-Dependent Supercooling of the
He3 Superfluid A-B Transition
Dmytro Lotnyk et al., Phys. Rev. Lett. 126, 215301 (2021) - Superconductivity in an extreme strange metal
D. H. Nguyen et al., Nat Commun 12, 4341 (2021) - High-Q Silicon Nitride Drum Resonators Strongly Coupled to Gates
Xin Zhou et al., Nano Lett. 21, 5738-5744 (2021) - Measurement of the 229Th isomer energy with a magnetic micro-calorimeter
T. Sikorsky et al., Phys. Rev. Lett. 125 (2020) 142503
A coherent nanomechanical oscillator driven by single-electron tunnelling
Y. Wen, N. Ares, F. J. Schupp, T. Pei, G. A. D. Briggs, E. A. LairdA single-electron transistor embedded in a nanomechanical resonator represents an extreme limit of electron–phonon coupling. While it allows fast and sensitive electromechanical measurements, it also introduces back-action forces from electron tunnelling that randomly perturb the mechanical state. Despite the stochastic nature of this back-action, it has been predicted to create self-sustaining coherent mechanical oscillations under strong coupling conditions. Here, we verify this prediction using real-time measurements of a vibrating carbon nanotube transistor. This electromechanical oscillator has some similarities with a laser. The single-electron transistor pumped by an electrical bias acts as a gain medium and the resonator acts as a phonon cavity. Although the operating principle is unconventional because it does not involve stimulated emission, we confirm that the output is coherent. We demonstrate other analogues of laser behaviour, including injection locking, classical squeezing through anharmonicity and frequency narrowing through feedback.
Nat. Phys. (2019)
doi: 10.1038/s41567-019-0683-5
arxiv: https://arxiv.org/abs/1903.04474
supplemental material: https://www.nature.com/articles/s41567-019-0683-5#MOESM1