- Photon Transport in a Bose-Hubbard Chain of Superconducting Artificial Atoms
G. P. Fedorov et al., Phys. Rev. Lett. 126, 180503 (2021) - Path-Dependent Supercooling of the
He3 Superfluid A-B Transition
Dmytro Lotnyk et al., Phys. Rev. Lett. 126, 215301 (2021) - Superconductivity in an extreme strange metal
D. H. Nguyen et al., Nat Commun 12, 4341 (2021) - High-Q Silicon Nitride Drum Resonators Strongly Coupled to Gates
Xin Zhou et al., Nano Lett. 21, 5738-5744 (2021) - Measurement of the 229Th isomer energy with a magnetic micro-calorimeter
T. Sikorsky et al., Phys. Rev. Lett. 125 (2020) 142503
Kelvin-Helmholtz Instability Of Ab Interface In Superfluid He3
V. B. Eltsov, A. Gordeev, M. KrusiusThe Kelvin-Helmholtz instability is well known in classical hydrodynamics where it explains the sudden emergence of interfacial surface waves as a function of the flow velocity parallel to the interface. It can be carried over to the inviscid two-fluid dynamics of superfluids, to describe the stability of the phase boundary separating two bulk phases of superfluid He3 in rotating flow when the boundary is localized with a magnetic-field gradient. The results from extensive measurements as a function of temperature and pressure confirm that in the superfluid the classic condition for stability is changed and that the magnetic polarization of the B phase at the phase boundary has to be taken into account, which yields the magnetic-field-dependent interfacial surface tension.
Physical Review B 99 (2019)
doi: 10.1103/PhysRevB.99.054104
arxiv: https://arxiv.org/abs/1612.00004