- Photon Transport in a Bose-Hubbard Chain of Superconducting Artificial Atoms
G. P. Fedorov et al., Phys. Rev. Lett. 126, 180503 (2021) - Path-Dependent Supercooling of the
He3 Superfluid A-B Transition
Dmytro Lotnyk et al., Phys. Rev. Lett. 126, 215301 (2021) - Superconductivity in an extreme strange metal
D. H. Nguyen et al., Nat Commun 12, 4341 (2021) - High-Q Silicon Nitride Drum Resonators Strongly Coupled to Gates
Xin Zhou et al., Nano Lett. 21, 5738-5744 (2021) - Measurement of the 229Th isomer energy with a magnetic micro-calorimeter
T. Sikorsky et al., Phys. Rev. Lett. 125 (2020) 142503
Charge Density Waves in Graphite: Towards the Magnetic Ultraquantum Limit.
F. Arnold, A. Isidori, E. Kampert, B. Yager, M. Eschrig, and J. SaundersGraphite is a model system for the study of three-dimensional electrons and holes in the magnetic quantum limit, in which the charges are confined to the lowest Landau levels. We report magneto-transport measurements in pulsed magnetic fields up to 60 T, which resolve the collapse of two charge density wave states in two, electron and hole, Landau levels at 52.3 and 54.2 T, respectively. We report evidence for a commensurate charge density wave at 47.1 T in the electron Landau level, and discuss the likely nature of the density wave instabilities over the full field range. The theoretical modeling of our results predicts that the ultraquantum limit is entered above 73.5 T. This state is an insulator, and we discuss its correspondence to the “metallic” state reported earlier. We propose that this (interaction-induced) insulating phase supports surface states that carry no charge or spin within the planes, but does, however, support charge transport out of plane.
Phys. Rev. Lett. 119, (2017)136601
doi: 10.1103/PhysRevLett.119.136601