- Photon Transport in a Bose-Hubbard Chain of Superconducting Artificial Atoms
G. P. Fedorov et al., Phys. Rev. Lett. 126, 180503 (2021) - Path-Dependent Supercooling of the
He3 Superfluid A-B Transition
Dmytro Lotnyk et al., Phys. Rev. Lett. 126, 215301 (2021) - Superconductivity in an extreme strange metal
D. H. Nguyen et al., Nat Commun 12, 4341 (2021) - High-Q Silicon Nitride Drum Resonators Strongly Coupled to Gates
Xin Zhou et al., Nano Lett. 21, 5738-5744 (2021) - Measurement of the 229Th isomer energy with a magnetic micro-calorimeter
T. Sikorsky et al., Phys. Rev. Lett. 125 (2020) 142503
Intertwined superfluid and density wave order in two-dimensional 4He
J.NyƩki, A.Phillis, A. Ho, D. Lee, P. Coleman, J. Parpia, B. Cowan & J. SaundersSuperfluidity is a manifestation of the operation of the laws of quantum mechanics on a macroscopic scale. The conditions under which superfluidity becomes manifest have been extensively explored experimentally in both quantum liquids (liquid 4He being the canonical example) and ultracold atomic gases1,2, including as a function of dimensionality3,4. Of particular interest is the hitherto unresolved question of whether a solid can be superfluid5,6. Here we report the identification of a new state of quantum matter with intertwined superfluid and density wave order in a system of two-dimensional bosons subject to a triangular lattice potential. Using a torsional oscillator we have measured the superfluid response of the second atomic layer of 4He adsorbed on the surface of graphite, over a wide temperature range down to 2 mK. Superfluidity is observed over a narrow range of film densities, emerging suddenly and subsequently collapsing towards a quantum critical point. The unusual temperature dependence of the superfluid density in the limit of zero temperature and the absence of a clear superfluid onset temperature are explained, self-consistently, by an ansatz for the excitation spectrum, reflecting density wave order, and a quasi-condensate wavefunction breaking both gauge and translational symmetry.
Nature Physics 13, (2017) 455–459
doi: doi:10.1038/nphys4023