Selected Publications
- Photon Transport in a Bose-Hubbard Chain of Superconducting Artificial Atoms
G. P. Fedorov et al., Phys. Rev. Lett. 126, 180503 (2021) - Path-Dependent Supercooling of the
He3 Superfluid A-B Transition
Dmytro Lotnyk et al., Phys. Rev. Lett. 126, 215301 (2021) - Superconductivity in an extreme strange metal
D. H. Nguyen et al., Nat Commun 12, 4341 (2021) - High-Q Silicon Nitride Drum Resonators Strongly Coupled to Gates
Xin Zhou et al., Nano Lett. 21, 5738-5744 (2021) - Measurement of the 229Th isomer energy with a magnetic micro-calorimeter
T. Sikorsky et al., Phys. Rev. Lett. 125 (2020) 142503
Thermodynamics and efficiency of an autonomous on-chip Maxwell's demon
A. Kutvonen, J. Koski, T. Ala-NissilaIn his famous letter in 1870, Maxwell describes how Joule's law can be violated only by the intelligent action of a mere guiding agent later coined as Maxwell's demon by Lord Kelvin. In this letter we study thermodynamics of information using an experimentally feasible Maxwell's demon setup based a single electron transistor capacitively coupled to a single electron box, where both the system and the Demon can be clearly identified. Such an engineered on-chip Demon measures and performes feedback on the system, which can be observed as cooling whose efficiency can be adjusted. We present a detailed analysis of the system and the Demon, including the second law of thermodynamics for bare and coarse grained entropy production and the flow of information as well as efficiency of information production and utilization. Our results demonstrate how information thermodynamics can be used to improve functionality of modern nanoscale devices.
scientific reports 6 , 1-7
doi: 10.1038/srep21126