- Photon Transport in a Bose-Hubbard Chain of Superconducting Artificial Atoms
G. P. Fedorov et al., Phys. Rev. Lett. 126, 180503 (2021) - Path-Dependent Supercooling of the
He3 Superfluid A-B Transition
Dmytro Lotnyk et al., Phys. Rev. Lett. 126, 215301 (2021) - Superconductivity in an extreme strange metal
D. H. Nguyen et al., Nat Commun 12, 4341 (2021) - High-Q Silicon Nitride Drum Resonators Strongly Coupled to Gates
Xin Zhou et al., Nano Lett. 21, 5738-5744 (2021) - Measurement of the 229Th isomer energy with a magnetic micro-calorimeter
T. Sikorsky et al., Phys. Rev. Lett. 125 (2020) 142503
Wideband superconducting nanotube electrometer
P. Häkkinen, A. Fay, D. Golubev, P. Lähteenmäki, P. HakonenWe have investigated the microwave response of nanotube Josephson junctions at 600–900â€â€Hz at microwave powers corresponding to currents from 0 to 2â€â€Atilde;—â۠C in the junction. Compared with theoretical modeling, the response of the junctions corresponds well to the lumped element model of resistively and capacitively shunted junction. We demonstrate the operation of these superconducting FETs as charge detectors at high frequencies without any matching circuits. Gate-voltage-induced charge Q G modifies the critical current I C, which changes the effective impedance of the junction under microwave irradiation. This change, dependent on the transfer characteristics dI C/dQ G, modifies the reflected signal and it can be used for wide band electrometry. We measure a sensitivity of 3.1×10−5â€â€/Hz√ from a sample which has a maximum switching current of 2.6â€â€A.
Appl. Phys. Lett. 107 1, 1-4
doi: 10.1063/1.4926400