User Tools

Site Tools


wiki:demag_papers

This is an old revision of the document!


Articles on Nuclear Demagnetization

Nuclear Cooling

  • Hyperfine Enhanced Nuclear Magnetic Cooling in Van Vleck Paramagnetic Intermetallic Compounds, K. Andres, E. Bucher, Journal of Applied Physics 42 (1971) 1522-1527, https://doi.org/10.1063/1.1660323

Nuclear Demagnetization of PrS and PrNi5, C. Buchal, K. J. Fischer, M. Kubota, R. M. Mueller, F. Pobell, Journal de Physique Lettres 39 (1978) L457-L458, doi.org/10.1051/jphyslet:019780039023045700

Two Stage Nuclear Demagnetization Experiments, R. Hunik, E. Bongers, J.A. Konter, W.J. Huiskamp, Journal de Physique Colloques 39 (1978) C6-1155-C6-1156, doi.org/10.1051/jphyscol:19786511

A Double-stage nuclear demagnetization refrigerator, R. M. Mueller, Chr. Buchal, H. R. Folle, M. Kubota, F. Pobell, Cryogenics 20 (1980) 395-407, doi.org/10.1016/S0011-2275(80)80049-X

Nuclear refrigeration properties of PrNi5, H. R. Folle, M. Kubota, Ch. Buchal, R. M. Mueller, F. Pobell, Zeitschrift für Physik B Condensed Matter 41 (1981) 223–228, doi.org/10.1007/BF01294426

The quest for ultralow temperatures: What are the limitations?, F. Pobell, Physica B+C 109–110 (1982) 1485-1498, doi.org/10.1016/0378-4363(82)90172-3

New method for nuclear cooling into the microkelvin regime, D. I. Bradley, A. M. Guénault, V. Keith, C. J. Kennedy, I. E. Miller, S. G. Musset, G. R. Pickett, W. P. Pratt, Jr., Journal of Low Temperature Physics 57 (1984) 359-390, doi.org/10.1007/BF00681199

Two-stage nuclear demagnetization refrigerator reaching 27 µK, H. Ishimoto, N. Nishida, T. Furubayashi, M. Shinohara, Y. Takano, Y. Miura, K. Ôno, Journal of Low Temperature Physics 55 (1984) 17–31, doi.org/10.1007/BF00683649

Adiabatic nuclear demagnetization: Two sophisticated experiments, O. V. Lounasmaa, Physica B+C 126 (1984) 8-17, doi.org/10.1016/0378-4363(84)90140-2

Optimization procedure for the cooling of Liquid 3He by adiabatic demagnetization of praseodymium nickel, J. M. Parpia, W. P. Kirk, P. S. Kobiela, T. L. Rhodes, Z. Olejniczak, G. N. Parker, Review of Scientific Instruments 56 (1985) 437-443, doi.org/10.1063/1.1138319

The Bayreuth Nuclear Demagnetization Refrigerator, K. Gloos, P. Smeibidl, C. Kennedy, A. Singsaas, P. Sekowski, R. M. Mueller, F. Pobell, Journal of Low Temperature Physics 73 (1988) 101-136, doi.org/10.1007/BF00114919

A Nuclear Demagnetization Cryostat for Thermometry, W. Buck, D. Hechtfischer, A. Hoffmann, Physica B 165 1990) 49-50

Compact PrNi5 nuclear demagnetization cryostat, S. A. J. Wiegers, T. Hata, C. C. Kranenburg, P. G. van de Haar, R. Jochemsen, G. Frossati, Cryogenics 30 (1990) 770-774, doi.org/10.1016/0011-2275(90)90274-G

Nuclear refrigeration and thermometry at microkelvin temperatures, F. Pobell, Journal of Low Temperature Physics 87 (1992) 635–649, doi.org/10.1007/BF00114919

Nuclear demagnetization cryostat at University of Florida Microkelvin Laboratory, J. Xu, O. Avenel, J. S. Xia, M.-F. Xu, T. Lang, P. L. Moyland, W. Ni, E. D. Adams, G. G. Ihas, M. V. Meisel, N. S. Sullivan, Y. Takano, Journal of Low Temperature Physics 89 (1992) 719-723, doi.org/10.1007/BF00694125

A nuclear demagnetization cryostat for nuclear ordering of hcp solid 3He, S. Abe, M. Nozawa, A. Ikeya, H. Tsujii, S. Inoue, T. Mamiya, Physica B: Condensed Matter 194–196 (1994) 49-50, doi.org/10.1016/0921-4526(94)90354-9

Direct demagnetization cooling of high-density solid 3He, T. Okamoto, H. Fukuyama, H. Akimoto, H. Ishimoto, S. Ogawa, Physical Review Letters 72 (1994) 868-871, doi.org/10.1103/PhysRevLett.72.868

A compact copper nuclear demagnetization refrigerator, G. Frossati, P. G. van der Haar, M. W. Meisel, P. Remeijer, S. C. Steel, R. Wagner, C. M. C. M. van Woerkens, Physica B: Condensed Matter 194–196 (1994) 53-54, doi.org/10.1016/0921-4526(94)90356-5

A. A. Golub, V. A. Goncharov, V. R. Litvinov, V. A. Mikheev, E. Y. Rudavskii, Y. A. Tokar, A. M. Usenko, V. A. Shvarts Nuclear demagnetization refrigerator with automatic control, pick up and data process system Fizika Nizkih Temperatur 21 (1995) 974-982

T. Lang, P. L. Moyland, D. A. Sergatskov, J. Xu, E. D. Adams, Y. Takano Pressure measurement during nuclear demagnetization of BCC and HCP solid 3He Journal of Low Temperature Physics 101 (1995) 677–681 doi.org/10.1007/BF00753373

E. N. Smith, A. Sawada, L. Pollack, K. A. Corbett, J. M. Parpia, R. C. Richardson The new cornell copper demagnetization stage Journal of Low Temperature Physics 101 (1995) 593–598 doi.org/10.1007/BF00753359

C. Bäuerle, J. Bossy, Yu. M. Bunkov, S. N. Fisher, Chr Gianèse, H. Godfrin The new grenoble 100 μK refrigerator Czechoslovak Journal of Physics 46 (1996) 2791–2792 doi.org/10.1007/BF02570382

J. Engert, P. G. Strchlow Thermodynamic description of nuclear demagnetization experiments Czechoslovak Journal of Physics 46 (1996) 2789–2790 doi.org/10.1007/BF02570381

P. Skyba, J. Nyéki, E. Gažo, V. Makroczyová, Yu. M. Bunkov, D. A. Sergackov, A. Feher Košice nuclear demagnetization refrigerator Cryogenics 37 (1997) 293-297 doi.org/10.1016/S0011-2275(97)00021-0

W. Wendler, P. Smeibidl, F. Pobell Nuclear magnetic properties of aluminium Journal of Low Temperature Physics 108 (1997) 291–304 doi.org/10.1007/BF02398716

V. V. Dmitriev, I. V. Kosarev, D. V. Ponarin, R. Scheibel Simple Nuclear Demagnetization Stage Journal of Low Temperature Physics 113 (1998) 945–949 doi.org/10.1023/A:1022579628345

J. T. Tuoriniemi, T. A. Knuuttila Nuclear cooling and spin properties of rhodium down to picokelvin temperatures Physica B: Condensed Matter 280 (2000) 474-478 doi.org/10.1016/S0921-4526(99)01839-6

W. Yao, T. A. Knuuttila, K. K. Nummila, J. E. Martikainen, A. S. Oja, O. V. Lounasmaa A Versatile Nuclear Demagnetization Cryostat for Ultralow Temperature Research Journal of Low Temperature Physics 120 (2000) 121–150 doi.org/10.1023/A:1004665020659

R. van Rooijen, A. Marchenkov, H. Akimoto, O. Andreeva, P.van de Haar, R. Jochemsen, G. Frossati Cryostat for optical observations below 1 mK and in strong magnetic fields Journal of Low Temperature Physics 124 (2001) 497-511 doi.org/10.1023/A:1017527320225

B. Bleaney, O. V. Lounasmaa Nuclear orientation and nuclear cooling experiments in Oxford and Helsinki, part 1, Progress before 1940 Notes and Records: the Royal Society Journal of the History of Science 57 (2003) 317-322 doi.org/10.1098/rsnr.2003.0217

B. Bleaney, O. V. Lounasmaa Nuclear orientation and nuclear cooling experiements in Oxford and Helsinki Part 2. Progress from 1945 to 1970 Notes and Records: the Royal Society Journal of the History of Science 57 (2003) 323-330 doi.org/10.1098/rsnr.2003.0218

H. Nakagawa, H. Yano, O. Ishikawa, T. Hata Study of heat leaks to copper nuclear demagnetization stage Physica B: Condensed Matter 329–333 (2003) 1606-1607 doi.org/10.1016/S0921-4526(02)02422-5

R. Masutomi, Y. Karaki, H. Ishimoto Direct Nuclear Demagnetization of Two Dimensional Solid 3He Adsorbed on Graphite Journal of Low Temperature Physics 134 (2004) 49–54 doi.org/10.1023/B:JOLT.0000012533.21563.b1

P. Bhupathi, J. Cancino, H. C. Choi, Y. Lee Construction of an ultra low temperature cryostat with an automated He-3 melting pressure thermometer AIP Conference Proceedings 850 (2006) 1571

P. Strehlow, H. Nuzha, E. Bork Construction of a Nuclear Cooling Stage Journal of Low Temperature Physics 147 (2007) 81-93 doi.org/10.1007/s10909-006-9300-y

A. C. Clark, K. K. Schwarzwälder, T. Bandi, D. Maradan, D. M. Zumbühl Method for cooling nanostructures to microkelvin temperatures Review of Scientific Instruments 81 (2010) 103904 doi.org/10.1063/1.3489892

H. R. Naren, R. S. Sannabhadti, A. Kumar, V. Arolkar, A. de Waard, G. Frossati, S. Ramakrishan Setting up of a microKelvin refrigerator facility at TIFR Current Science 101 (2011) 28-34

D. H. Nguyen, A. Sidorenko, M. Müller, S. Paschen, A. Waard, G. Frossati The Vienna Nuclear Demagnetization Refrigerator Journal of Physics: Conference Series 400 (2012) 052024 doi.org/10.1088/1742-6596/400/5/052024

G. Batey, A. Casey, M. N. Cuthbert, A. J. Matthews, J. Saunders, A. Shibahara A microkelvin cryogen-free experimental platform with integrated noise thermometry New Journal of Physics 15 (2013) 113034 doi.org/10.1088/1367-2630/15/11/113034

S. Abe, K. Matsumoto Nuclear demagnetization for ultra-low temperatures Cryogenics 62 (2014) 213-220 doi.org/10.1016/j.cryogenics.2014.04.004

I. Todoshchenko, J.-P. Kaikkonen, R. Blaauwgeers, P. J. Hakonen, A. Savin Dry demagnetization cryostat for sub-millikelvin helium experiments: Refrigeration and thermometry Review of Scientific Instruments 85 (2014) 085106 doi.org/10.1063/1.4891619

D. I. Bradley, A. M. Guénault, D. Gunnarsson, R. P. Haley, S. Holt, A. T. Jones, Yu. A. Pashkin, J. Penttilä, J. R. Prance, M. Prunnila, L. Roschier On-chip magnetic cooling of a nanoelectronic device Scientific Reports 7 (2017) 45566 doi.org/10.1038/srep45566

M. Palma, D. Maradan, L. Casparis, T.-M. Liu, F. N. M. Froning, D. M. Zumbühl Magnetic cooling for microkelvin nanoelectronics on a cryofree platform Review of Scientific Instruments 88 (2017) 043902 doi.org/10.1063/1.4979929

Z. G. Cheng, J. Fan, X. Jing, L. Lu Sub-millikelvin station at Synergetic Extreme Condition User Facility Chinese Physics B 27 (2018) 070702 doi.org/10.1088/1674-1056/27/7/070702

R. Toda, S. Murakawa, H. Fukuyama Design and expected performance of a compact and continuous nuclear demagnetization refrigerator for sub-mK applications Journal of Physics: Conference Series 969 (2018) 012093 doi.org/10.1088/1742-6596/969/1/012093

D. Schmoranzer, R. Gazizulin, S. Triqueneaux, E. Collin, A. Fefferman Development of a Sub-mK Continuous Nuclear Demagnetization Refrigerator Journal of Low Temperature Physics 196 (2019) 261–267 doi.org/10.1007/s10909-018-02128-9

N. Yurttagül, M. Sarsby, A. Geresdi Indium as a High-Cooling-Power Nuclear Refrigerant for Quantum Nanoelectronics Physical Review Applied 12 (2019) 011005 doi.org/10.1103/PhysRevApplied.12.011005

A. T. Jones, C. P. Scheller, J. R. Prance, Y. B. Kalyoncu, D. M. Zumbühl, R. P. Haley Progress in Cooling Nanoelectronic Devices to Ultra-Low Temperatures Journal of Low Temperature Physics 201 (2020) 772–802 doi.org/10.1007/s10909-020-02472-9

D. Schmoranzer, J. Butterworth, S. Triqueneaux, E. Collin, A. Fefferman Design evaluation of serial and parallel sub-mK continuous nuclear demagnetization refrigerators Cryogenics 110 (2020) 103119 doi.org/10.1016/j.cryogenics.2020.103119

J. Yan, J. Yao, V. Shvarts, R.-R. Du, X. Lin Cryogen-free one hundred microkelvin refrigerator Review of Scientific Instruments 92 (2021) 025120 doi.org/10.1063/5.0036497

S. Takimoto, R. Toda, S. Murakawa, H. Fukuyama Construction of Continuous Magnetic Cooling Apparatus with Zinc-Soldered PrNi5 Nuclear Stages Journal of Low Temperature Physics 208 (2022) 492–500 doi.org/10.1007/s10909-022-02801-0

Ultralow temperature refrigerators

  • The new Grenoble 100 microKelvin refrigerator, C. Bäuerle, Y. Bunkov, S.N. Fisher, Chr. Gianese and H. Godfrin, Proc. of the 21st. Int. Conf on Low Temp. Physics, Prague, August 8-14 1996, Czekoslovak J. of Phys. 46, suppl S5, 2791-2792, 1996
  • Cryogen free one hundred micro Kelvin refrigerator, Jiaojie Yan, Jianing Yao, Vladimir Shvarts, Rui Rui Du and Xi Lin, Rev. Sci. Instrum.92, 025120 (2021) https://doi.org/10.1063/5.003649 https://arxiv.org/abs/2010.04472v2
wiki/demag_papers.1668206860.txt.gz · Last modified: 2022/11/11 22:47 by henri.godfrin@neel.cnrs.fr