wiki:demag_papers
Articles on Nuclear Demagnetization
Hyperfine Enhanced Nuclear Magnetic Cooling in Van Vleck Paramagnetic Intermetallic Compounds, K. Andres, E. Bucher, Journal of Applied Physics 42 (1971) 1522-1527,
https://doi.org/10.1063/1.1660323
Nuclear refrigeration properties of PrNi5, H. R. Folle, M. Kubota, Ch. Buchal, R. M. Mueller, F. Pobell, Zeitschrift für Physik B Condensed Matter 41 (1981) 223–228,
https://doi.org/10.1007/BF01294426
New method for nuclear cooling into the microkelvin regime, D. I. Bradley, A. M. Guénault, V. Keith, C. J. Kennedy, I. E. Miller, S. G. Musset, G. R. Pickett, W. P. Pratt, Jr., Journal of Low Temperature Physics 57 (1984) 359-390,
https://doi.org/10.1007/BF00681199
Two-stage nuclear demagnetization refrigerator reaching 27 µK, H. Ishimoto, N. Nishida, T. Furubayashi, M. Shinohara, Y. Takano, Y. Miura, K. Ôno, Journal of Low Temperature Physics 55 (1984) 17–31,
https://doi.org/10.1007/BF00683649
Optimization procedure for the cooling of Liquid 3He by adiabatic demagnetization of praseodymium nickel, J. M. Parpia, W. P. Kirk, P. S. Kobiela, T. L. Rhodes, Z. Olejniczak, G. N. Parker, Review of Scientific Instruments 56 (1985) 437-443,
https://doi.org/10.1063/1.1138319
The Bayreuth Nuclear Demagnetization Refrigerator, K. Gloos, P. Smeibidl, C. Kennedy, A. Singsaas, P. Sekowski, R. M. Mueller, F. Pobell, Journal of Low Temperature Physics 73 (1988) 101-136,
https://doi.org/10.1007/BF00114919
A Nuclear Demagnetization Cryostat for Thermometry, W. Buck, D. Hechtfischer, A. Hoffmann, Physica B 165 1990) 49-50
Nuclear demagnetization cryostat at University of Florida Microkelvin Laboratory, J. Xu, O. Avenel, J. S. Xia, M.-F. Xu, T. Lang, P. L. Moyland, W. Ni, E. D. Adams, G. G. Ihas, M. V. Meisel, N. S. Sullivan, Y. Takano, Journal of Low Temperature Physics 89 (1992) 719-723,
https://doi.org/10.1007/BF00694125
A nuclear demagnetization cryostat for nuclear ordering of hcp solid 3He, S. Abe, M. Nozawa, A. Ikeya, H. Tsujii, S. Inoue, T. Mamiya, Physica B: Condensed Matter 194–196 (1994) 49-50,
https://doi.org/10.1016/0921-4526(94)90354-9
A compact copper nuclear demagnetization refrigerator, G. Frossati, P. G. van der Haar, M. W. Meisel, P. Remeijer, S. C. Steel, R. Wagner, C. M. C. M. van Woerkens, Physica B: Condensed Matter 194–196 (1994) 53-54,
https://doi.org/10.1016/0921-4526(94)90356-5
Nuclear demagnetization refrigerator with automatic control, pick up and data process system, A. A. Golub, V. A. Goncharov, V. R. Litvinov, V. A. Mikheev, E. Y. Rudavskii, Y. A. Tokar, A. M. Usenko, V. A. Shvarts, Fizika Nizkih Temperatur 21 (1995) 974-982
Pressure measurement during nuclear demagnetization of BCC and HCP solid 3He, T. Lang, P. L. Moyland, D. A. Sergatskov, J. Xu, E. D. Adams, Y. Takano, Journal of Low Temperature Physics 101 (1995) 677–681,
https://doi.org/10.1007/BF00753373
The new cornell copper demagnetization stage, E. N. Smith, A. Sawada, L. Pollack, K. A. Corbett, J. M. Parpia, R. C. Richardson, Journal of Low Temperature Physics 101 (1995) 593–598,
https://doi.org/10.1007/BF00753359
The new grenoble 100 μK refrigerator, C. Bäuerle, J. Bossy, Yu. M. Bunkov, S. N. Fisher, Chr Gianèse, H. Godfrin, Czechoslovak Journal of Physics 46 (1996) 2791–2792,
https://doi.org/10.1007/BF02570382
Thermodynamic description of nuclear demagnetization experiments, J. Engert, P. G. Strchlow, Czechoslovak Journal of Physics 46 (1996) 2789–2790,
https://doi.org/10.1007/BF02570381
A Versatile Nuclear Demagnetization Cryostat for Ultralow Temperature Research, W. Yao, T. A. Knuuttila, K. K. Nummila, J. E. Martikainen, A. S. Oja, O. V. Lounasmaa, Journal of Low Temperature Physics 120 (2000) 121–150,
https://doi.org/10.1023/A:1004665020659
Cryostat for optical observations below 1 mK and in strong magnetic fields, R. van Rooijen, A. Marchenkov, H. Akimoto, O. Andreeva, P.van de Haar, R. Jochemsen, G. Frossati, Journal of Low Temperature Physics 124 (2001) 497-511,
https://doi.org/10.1023/A:1017527320225
Nuclear orientation and nuclear cooling experiments in Oxford and Helsinki, part 1, Progress before 1940, B. Bleaney, O. V. Lounasmaa,Notes and Records: the Royal Society Journal of the History of Science 57 (2003) 317-322,
https://doi.org/10.1098/rsnr.2003.0217
Nuclear orientation and nuclear cooling experiements in Oxford and Helsinki Part 2. Progress from 1945 to 1970, B. Bleaney, O. V. Lounasmaa, Notes and Records: the Royal Society Journal of the History of Science 57 (2003), 323-330,
https://doi.org/10.1098/rsnr.2003.0218
Construction of an ultra low temperature cryostat with an automated He-3 melting pressure thermometer, P. Bhupathi, J. Cancino, H. C. Choi, Y. Lee, AIP Conference Proceedings 850 (2006) 1571
Method for cooling nanostructures to microkelvin temperatures, A. C. Clark, K. K. Schwarzwälder, T. Bandi, D. Maradan, D. M. Zumbühl, Review of Scientific Instruments 81 (2010) 103904,
https://doi.org/10.1063/1.3489892
Setting up of a microKelvin refrigerator facility at TIFR, H. R. Naren, R. S. Sannabhadti, A. Kumar, V. Arolkar, A. de Waard, G. Frossati, S. Ramakrishan, Current Science 101 (2011) 28-34]]
A microkelvin cryogen-free experimental platform with integrated noise thermometry, G. Batey, A. Casey, M. N. Cuthbert, A. J. Matthews, J. Saunders, A. Shibahara, New Journal of Physics 15 (2013) 113034,
https://doi.org/10.1088/1367-2630/15/11/113034
Dry demagnetization cryostat for sub-millikelvin helium experiments: Refrigeration and thermometry, I. Todoshchenko, J.-P. Kaikkonen, R. Blaauwgeers, P. J. Hakonen, A. Savin, Review of Scientific Instruments 85 (2014) 085106,
https://doi.org/10.1063/1.4891619
On-chip magnetic cooling of a nanoelectronic device, D. I. Bradley, A. M. Guénault, D. Gunnarsson, R. P. Haley, S. Holt, A. T. Jones, Yu. A. Pashkin, J. Penttilä, J. R. Prance, M. Prunnila, L. Roschier, Scientific Reports 7 (2017) 45566,
https://doi.org/10.1038/srep45566
Magnetic cooling for microkelvin nanoelectronics on a cryofree platform, M. Palma, D. Maradan, L. Casparis, T.-M. Liu, F. N. M. Froning, D. M. Zumbühl, Review of Scientific Instruments 88 (2017) 043902,
https://doi.org/10.1063/1.4979929
Design and expected performance of a compact and continuous nuclear demagnetization refrigerator for sub-mK applications, R. Toda, S. Murakawa, H. Fukuyama, Journal of Physics: Conference Series 969 (2018) 012093,
https://doi.org/10.1088/1742-6596/969/1/012093
Development of a Sub-mK Continuous Nuclear Demagnetization Refrigerator, D. Schmoranzer, R. Gazizulin, S. Triqueneaux, E. Collin, A. Fefferman, Journal of Low Temperature Physics 196 (2019) 261–267,
https://doi.org/10.1007/s10909-018-02128-9
Progress in Cooling Nanoelectronic Devices to Ultra-Low Temperatures, A. T. Jones, C. P. Scheller, J. R. Prance, Y. B. Kalyoncu, D. M. Zumbühl, R. P. Haley, Journal of Low Temperature Physics 201 (2020) 772–802,
https://doi.org/10.1007/s10909-020-02472-9
Design evaluation of serial and parallel sub-mK continuous nuclear demagnetization refrigerators, D. Schmoranzer, J. Butterworth, S. Triqueneaux, E. Collin, A. Fefferman, Cryogenics 110 (2020) 103119,
https://doi.org/10.1016/j.cryogenics.2020.103119
Progress in Cooling Nanoelectronic Devices to Ultra‑Low Temperatures, A. T. Jones, C. P. Scheller, J. R. Prance, Y. B. Kalyoncu, D. M. Zumbühl, R. P. Haley, Journal of Low Temperature Physics, 201, pages772–802 (2020) (
https://doi.org/10.1007/s10909-020-02472-9)
Cryogen-free one hundred microkelvin refrigerator, J. Yan, J. Yao, V. Shvarts, R.-R. Du, X. Lin, Review of Scientific Instruments 92 (2021) 025120,
https://doi.org/10.1063/5.0036497
Construction of Continuous Magnetic Cooling Apparatus with Zinc-Soldered PrNi5 Nuclear Stages, S. Takimoto, R. Toda, S. Murakawa, H. Fukuyama, Journal of Low Temperature Physics 208 (2022) 492–500,
https://doi.org/10.1007/s10909-022-02801-0
wiki/demag_papers.txt · Last modified: 2022/12/15 13:56 by henri.godfrin@neel.cnrs.fr