User Tools

Site Tools


wiki:demag_papers

Articles on Nuclear Demagnetization

  • Hyperfine Enhanced Nuclear Magnetic Cooling in Van Vleck Paramagnetic Intermetallic Compounds, K. Andres, E. Bucher, Journal of Applied Physics 42 (1971) 1522-1527, https://doi.org/10.1063/1.1660323
  • Nuclear refrigeration properties of PrNi5, H. R. Folle, M. Kubota, Ch. Buchal, R. M. Mueller, F. Pobell, Zeitschrift für Physik B Condensed Matter 41 (1981) 223–228, https://doi.org/10.1007/BF01294426
  • New method for nuclear cooling into the microkelvin regime, D. I. Bradley, A. M. Guénault, V. Keith, C. J. Kennedy, I. E. Miller, S. G. Musset, G. R. Pickett, W. P. Pratt, Jr., Journal of Low Temperature Physics 57 (1984) 359-390, https://doi.org/10.1007/BF00681199
  • Two-stage nuclear demagnetization refrigerator reaching 27 µK, H. Ishimoto, N. Nishida, T. Furubayashi, M. Shinohara, Y. Takano, Y. Miura, K. Ôno, Journal of Low Temperature Physics 55 (1984) 17–31, https://doi.org/10.1007/BF00683649
  • Optimization procedure for the cooling of Liquid 3He by adiabatic demagnetization of praseodymium nickel, J. M. Parpia, W. P. Kirk, P. S. Kobiela, T. L. Rhodes, Z. Olejniczak, G. N. Parker, Review of Scientific Instruments 56 (1985) 437-443, https://doi.org/10.1063/1.1138319
  • The Bayreuth Nuclear Demagnetization Refrigerator, K. Gloos, P. Smeibidl, C. Kennedy, A. Singsaas, P. Sekowski, R. M. Mueller, F. Pobell, Journal of Low Temperature Physics 73 (1988) 101-136, https://doi.org/10.1007/BF00114919
  • A Nuclear Demagnetization Cryostat for Thermometry, W. Buck, D. Hechtfischer, A. Hoffmann, Physica B 165 1990) 49-50
  • Nuclear refrigeration and thermometry at microkelvin temperatures, F. Pobell, Journal of Low Temperature Physics 87 (1992) 635–649, https://doi.org/10.1007/BF00114919
  • Nuclear demagnetization cryostat at University of Florida Microkelvin Laboratory, J. Xu, O. Avenel, J. S. Xia, M.-F. Xu, T. Lang, P. L. Moyland, W. Ni, E. D. Adams, G. G. Ihas, M. V. Meisel, N. S. Sullivan, Y. Takano, Journal of Low Temperature Physics 89 (1992) 719-723, https://doi.org/10.1007/BF00694125
  • A nuclear demagnetization cryostat for nuclear ordering of hcp solid 3He, S. Abe, M. Nozawa, A. Ikeya, H. Tsujii, S. Inoue, T. Mamiya, Physica B: Condensed Matter 194–196 (1994) 49-50, https://doi.org/10.1016/0921-4526(94)90354-9
  • A compact copper nuclear demagnetization refrigerator, G. Frossati, P. G. van der Haar, M. W. Meisel, P. Remeijer, S. C. Steel, R. Wagner, C. M. C. M. van Woerkens, Physica B: Condensed Matter 194–196 (1994) 53-54, https://doi.org/10.1016/0921-4526(94)90356-5
  • Nuclear demagnetization refrigerator with automatic control, pick up and data process system, A. A. Golub, V. A. Goncharov, V. R. Litvinov, V. A. Mikheev, E. Y. Rudavskii, Y. A. Tokar, A. M. Usenko, V. A. Shvarts, Fizika Nizkih Temperatur 21 (1995) 974-982
  • Pressure measurement during nuclear demagnetization of BCC and HCP solid 3He, T. Lang, P. L. Moyland, D. A. Sergatskov, J. Xu, E. D. Adams, Y. Takano, Journal of Low Temperature Physics 101 (1995) 677–681, https://doi.org/10.1007/BF00753373
  • The new cornell copper demagnetization stage, E. N. Smith, A. Sawada, L. Pollack, K. A. Corbett, J. M. Parpia, R. C. Richardson, Journal of Low Temperature Physics 101 (1995) 593–598, https://doi.org/10.1007/BF00753359
  • The new grenoble 100 μK refrigerator, C. Bäuerle, J. Bossy, Yu. M. Bunkov, S. N. Fisher, Chr Gianèse, H. Godfrin, Czechoslovak Journal of Physics 46 (1996) 2791–2792, https://doi.org/10.1007/BF02570382
  • Thermodynamic description of nuclear demagnetization experiments, J. Engert, P. G. Strchlow, Czechoslovak Journal of Physics 46 (1996) 2789–2790, https://doi.org/10.1007/BF02570381
  • Nuclear magnetic properties of aluminium, W. Wendler, P. Smeibidl, F. Pobell, Journal of Low Temperature Physics 108 (1997) 291–304, https://doi.org/10.1007/BF02398716
  • Simple Nuclear Demagnetization Stage, V. V. Dmitriev, I. V. Kosarev, D. V. Ponarin, R. Scheibel, Journal of Low Temperature Physics 113 (1998) 945–949, https://doi.org/10.1023/A:1022579628345
  • A Versatile Nuclear Demagnetization Cryostat for Ultralow Temperature Research, W. Yao, T. A. Knuuttila, K. K. Nummila, J. E. Martikainen, A. S. Oja, O. V. Lounasmaa, Journal of Low Temperature Physics 120 (2000) 121–150, https://doi.org/10.1023/A:1004665020659
  • Cryostat for optical observations below 1 mK and in strong magnetic fields, R. van Rooijen, A. Marchenkov, H. Akimoto, O. Andreeva, P.van de Haar, R. Jochemsen, G. Frossati, Journal of Low Temperature Physics 124 (2001) 497-511, https://doi.org/10.1023/A:1017527320225
  • Nuclear orientation and nuclear cooling experiments in Oxford and Helsinki, part 1, Progress before 1940, B. Bleaney, O. V. Lounasmaa,Notes and Records: the Royal Society Journal of the History of Science 57 (2003) 317-322, https://doi.org/10.1098/rsnr.2003.0217
  • Nuclear orientation and nuclear cooling experiements in Oxford and Helsinki Part 2. Progress from 1945 to 1970, B. Bleaney, O. V. Lounasmaa, Notes and Records: the Royal Society Journal of the History of Science 57 (2003), 323-330, https://doi.org/10.1098/rsnr.2003.0218
  • Construction of an ultra low temperature cryostat with an automated He-3 melting pressure thermometer, P. Bhupathi, J. Cancino, H. C. Choi, Y. Lee, AIP Conference Proceedings 850 (2006) 1571
  • Method for cooling nanostructures to microkelvin temperatures, A. C. Clark, K. K. Schwarzwälder, T. Bandi, D. Maradan, D. M. Zumbühl, Review of Scientific Instruments 81 (2010) 103904, https://doi.org/10.1063/1.3489892
  • Setting up of a microKelvin refrigerator facility at TIFR, H. R. Naren, R. S. Sannabhadti, A. Kumar, V. Arolkar, A. de Waard, G. Frossati, S. Ramakrishan, Current Science 101 (2011) 28-34]]
  • A microkelvin cryogen-free experimental platform with integrated noise thermometry, G. Batey, A. Casey, M. N. Cuthbert, A. J. Matthews, J. Saunders, A. Shibahara, New Journal of Physics 15 (2013) 113034, https://doi.org/10.1088/1367-2630/15/11/113034
  • Dry demagnetization cryostat for sub-millikelvin helium experiments: Refrigeration and thermometry, I. Todoshchenko, J.-P. Kaikkonen, R. Blaauwgeers, P. J. Hakonen, A. Savin, Review of Scientific Instruments 85 (2014) 085106, https://doi.org/10.1063/1.4891619
  • On-chip magnetic cooling of a nanoelectronic device, D. I. Bradley, A. M. Guénault, D. Gunnarsson, R. P. Haley, S. Holt, A. T. Jones, Yu. A. Pashkin, J. Penttilä, J. R. Prance, M. Prunnila, L. Roschier, Scientific Reports 7 (2017) 45566, https://doi.org/10.1038/srep45566
  • Magnetic cooling for microkelvin nanoelectronics on a cryofree platform, M. Palma, D. Maradan, L. Casparis, T.-M. Liu, F. N. M. Froning, D. M. Zumbühl, Review of Scientific Instruments 88 (2017) 043902, https://doi.org/10.1063/1.4979929
  • Design and expected performance of a compact and continuous nuclear demagnetization refrigerator for sub-mK applications, R. Toda, S. Murakawa, H. Fukuyama, Journal of Physics: Conference Series 969 (2018) 012093, https://doi.org/10.1088/1742-6596/969/1/012093
  • Development of a Sub-mK Continuous Nuclear Demagnetization Refrigerator, D. Schmoranzer, R. Gazizulin, S. Triqueneaux, E. Collin, A. Fefferman, Journal of Low Temperature Physics 196 (2019) 261–267, https://doi.org/10.1007/s10909-018-02128-9
  • Progress in Cooling Nanoelectronic Devices to Ultra-Low Temperatures, A. T. Jones, C. P. Scheller, J. R. Prance, Y. B. Kalyoncu, D. M. Zumbühl, R. P. Haley, Journal of Low Temperature Physics 201 (2020) 772–802, https://doi.org/10.1007/s10909-020-02472-9
  • Design evaluation of serial and parallel sub-mK continuous nuclear demagnetization refrigerators, D. Schmoranzer, J. Butterworth, S. Triqueneaux, E. Collin, A. Fefferman, Cryogenics 110 (2020) 103119, https://doi.org/10.1016/j.cryogenics.2020.103119
  • Progress in Cooling Nanoelectronic Devices to Ultra‑Low Temperatures, A. T. Jones, C. P. Scheller, J. R. Prance, Y. B. Kalyoncu, D. M. Zumbühl, R. P. Haley, Journal of Low Temperature Physics, 201, pages772–802 (2020) (https://doi.org/10.1007/s10909-020-02472-9)
  • Cryogen-free one hundred microkelvin refrigerator, J. Yan, J. Yao, V. Shvarts, R.-R. Du, X. Lin, Review of Scientific Instruments 92 (2021) 025120, https://doi.org/10.1063/5.0036497
  • Construction of Continuous Magnetic Cooling Apparatus with Zinc-Soldered PrNi5 Nuclear Stages, S. Takimoto, R. Toda, S. Murakawa, H. Fukuyama, Journal of Low Temperature Physics 208 (2022) 492–500, https://doi.org/10.1007/s10909-022-02801-0
wiki/demag_papers.txt · Last modified: 2022/12/15 13:56 by henri.godfrin@neel.cnrs.fr